chapter 3, operands, postfix expressions

This commit is contained in:
Simon From Jakobsen 2024-09-11 14:11:43 +00:00
parent 153c71d78e
commit 71d4553523
2 changed files with 264 additions and 14 deletions

View File

@ -417,7 +417,7 @@ while (token !== null) {
## 2.10 Exercises ## 2.10 Exercises
1. Implement the operators: `-`, `*`, `/`, `(`, `)`, `[`, `]`, `!=`, `<`, `>`, `<=` and `>=`. 1. Implement the operators: `-`, `*`, `/`, `(`, `)`, `.`, `,`, `,`, `[`, `]`, `!=`, `<`, `>`, `<=` and `>=`.
2. Implement the keywords: `true`, `false`, `null`, `or`, `and`, `not`, `loop`, `break`, `let`, `fn` and `return`. 2. Implement the keywords: `true`, `false`, `null`, `or`, `and`, `not`, `loop`, `break`, `let`, `fn` and `return`.
3. \* Implement single line comments using `//` and multiline comments using `\*` and `*\` (\*\* extra points if multiline comments can be nested, eg. `/* ... /* ... */ ... */`). 3. \* Implement single line comments using `//` and multiline comments using `\*` and `*\` (\*\* extra points if multiline comments can be nested, eg. `/* ... /* ... */ ... */`).
4. \* Reimplement integers such that integers are either `0` or start with `[1-9]`. 4. \* Reimplement integers such that integers are either `0` or start with `[1-9]`.

View File

@ -1,11 +1,11 @@
# Parser # 3 Parser
In this chaper I'll show how I would make a parser. In this chaper I'll show how I would make a parser.
A parser, in addition to our lexer, transforms the input program as text, meaning an unstructured sequence of characters, into a structered representation. Structured meaning the representation tells us about the different constructs such as if statements and expressions. A parser, in addition to our lexer, transforms the input program as text, meaning an unstructured sequence of characters, into a structered representation. Structured meaning the representation tells us about the different constructs such as if statements and expressions.
## Abstract Syntax Tree AST ## 3.1 Abstract Syntax Tree AST
The result of parsing is a tree structure representing the input program. The result of parsing is a tree structure representing the input program.
@ -43,7 +43,7 @@ Both `Stmt` (statement) and `Expr` (expression) are polymorphic types, meaning a
For both `Stmt` and `Expr` there's an error-kind. This makes the parser simpler, as we won't need to manage parsing failures differently than successful parslings. For both `Stmt` and `Expr` there's an error-kind. This makes the parser simpler, as we won't need to manage parsing failures differently than successful parslings.
## Consumer of lexer ## 3.2 Consumer of lexer
To start, we'll implement a `Parser` class, which for now is simply a consumer of a token iterater, meaning the lexer. In simple terms, whereas the lexer is a transformation from text to tokens, the parser is a transformation from token to an AST, except that the parser is not an iterator. To start, we'll implement a `Parser` class, which for now is simply a consumer of a token iterater, meaning the lexer. In simple terms, whereas the lexer is a transformation from text to tokens, the parser is a transformation from token to an AST, except that the parser is not an iterator.
@ -110,14 +110,14 @@ We'll also want a method for reporting errors.
```ts ```ts
class Parser { class Parser {
// ... // ...
private report(pos: Pos, msg: string) { private report(msg: string, pos = this.pos()) {
console.log(`Parser: ${msg} at ${pos.line}:${pos.col}`); console.log(`Parser: ${msg} at ${pos.line}:${pos.col}`);
} }
// ... // ...
} }
``` ```
## Operands ## 3.3 Operands
Operands are the individual parts of an operation. For example, in the math expression `a + b`, (would be `+ a b` in the input language), `a` and `b` are the *operands*, while `+` is the *operator*. In the expression `a + b * c`, the operands are `a`, `b` and `c`. But in the expression `a * (b + c)`, the operands of the multiply operation are `a` and `(b + c)`. `(b + c)` is an operands, because it is enclosed on both sides. This is how we'll define operands. Operands are the individual parts of an operation. For example, in the math expression `a + b`, (would be `+ a b` in the input language), `a` and `b` are the *operands*, while `+` is the *operator*. In the expression `a + b * c`, the operands are `a`, `b` and `c`. But in the expression `a * (b + c)`, the operands of the multiply operation are `a` and `(b + c)`. `(b + c)` is an operands, because it is enclosed on both sides. This is how we'll define operands.
@ -128,12 +128,8 @@ class Parser {
// ... // ...
public parseOperand(): Expr { public parseOperand(): Expr {
const pos = this.pos(); const pos = this.pos();
if (this.test("int")) { // ...
const value = this.current().intValue; this.report("expected expr", pos);
this.step();
return { kind: { type: "int", value }, pos };
}
this.report(pos "expected expr");
this.step(); this.step();
return { kind: { type: "error" }, pos }; return { kind: { type: "error" }, pos };
} }
@ -141,14 +137,16 @@ class Parser {
} }
``` ```
### Integer ### 3.3.1 Identifiers and literals
Parsing an integer is a 1:1 translation between the integer token and an integer expression. Identifiers and literals (integers, strings) are single token constructs, meaning the parsing consists of translating a token into an ast-node with the value.
```ts ```ts
type ExprKind = type ExprKind =
// ... // ...
| { type: "ident", value: string }
| { type: "int", value: number } | { type: "int", value: number }
| { type: "string", value: string }
// ... // ...
; ;
``` ```
@ -158,14 +156,266 @@ class Parser {
// ... // ...
public parseOperand(): Expr { public parseOperand(): Expr {
// ... // ...
if (this.test("ident")) {
const value = this.current().identValue;
this.step();
return { kind: { type: "ident", value }, pos };
}
if (this.test("int")) { if (this.test("int")) {
const value = this.current().intValue; const value = this.current().intValue;
this.step(); this.step();
return { kind: { type: "int", value }, pos }; return { kind: { type: "int", value }, pos };
} }
if (this.test("string")) {
const value = this.current().stringValue;
this.step();
return { kind: { type: "string", value }, pos };
}
// ... // ...
} }
// ... // ...
} }
``` ```
### 3.3.2 Group expressions
A group expression is an expression enclosed in parenthesis, eg `(1 + 2)`. Because the expression is enclosed, meaning starts with a `(`-token and ends with a `)`-token, we will treat is like an operand.
```ts
type ExprKind =
// ...
| { type: "group", expr: Expr }
// ...
;
```
If we find a `(`-token in `.parseOperand()`, we know that we should parse a group expression. We do this by ignoring the `(`-token, parsing an expression using `.parseExpr()` and checking that we find a `)`-token afterwards.
```ts
class Parser {
// ...
public parseOperand(): Expr {
// ...
if (this.test("(")) {
this.step();
const expr = this.parseExpr();
if (!this.test(")")) {
this.report("expected ')'");
return { kind: { type: "error" }, pos };
}
this.step();
return { kind: { type: "group", expr }, pos };
}
// ...
}
// ...
}
```
If we do not find the closing `)`-token, we report an error and return an error expression.
### 3.3.3 Block, if and loop operands
We want to be able to use blocks, if and loop constructs as expressions.
Example:
```rs
let temperature_feeling = if > temperature 20 { "hot" } else { "cold" };
```
Each construct will have their own `.parse...()`-method, so we'll just look for the first `{`-, `if`-, or `loop`-token and call the relevant method.
```ts
class Parser {
// ...
public parseOperand(): Expr {
// ...
if (this.test("{"))
return this.parseBlock();
if (this.test("if"))
return this.parseIf();
if (this.test("loop"))
return this.parseLoop();
// ...
}
// ...
}
```
## 3.4 Postfix operators
Postfix operations are expressions were the operators come after the subject expression. This includes field expressions (eg. `subject.field`), index expressions (eg. `subject[index]`) and call expressions (eg. `subject(...args)`).
A notable detail, is that postfix operations are chainable, eg. `subject[index].field` is valid, likewise with `subject.method(arg)` and `matrix[y][x]`.
We'll make a method `.parsePostfix()` to parse postfix operators.
```ts
class Parser {
// ...
public parsePostfix(): Expr {
let subject = this.parseOperand();
while (true) {
const pos = this.pos();
// ...
break;
}
return subject;
}
// ...
}
```
We start by parsing an operand. Then we enter a loop, which runs until we no longer find any relevant operator tokens. When we parse a postfix expression, the `subject` will be replaced with the new parsed expression.
Notice we don't define `pos` at the start, but after we've parsed the subject. That's because we want `pos` to the reflect the start of the postfix operator, not the start of the subject.
### 3.4.1 Field expression
A field expression is for accessing fields on an object, and consists of a `.`-token and an identifier, eg. `.field`.
```ts
type ExprKind =
// ...
| { type: "field", subject: Expr, value: string }
// ...
;
```
```ts
class Parser {
// ...
public parsePostfix(): Expr {
// ...
while (true) {
// ...
if (this.test(".")) {
this.step();
if (!this.test("ident")) {
this.report("expected ident");
return { kind: { type: "error" }, pos };
}
const value = this.current().identValue;
this.step();
subject = { kind: { type: "field", subject, value }, pos };
continue;
}
// ...
}
// ...
}
// ...
}
```
If we find a `.`-token, we step over it, and make sure that we've hit an identifier. We save the identifier value and step over the identifier. Then we replace `subject` with a new field expression containing the previous `subject` value. Then we continue to look for the next postfix operator.
### 3.4.2 Index expression
An index operation consists of the subject and an index. The index is an expression, and it is contained in `[`- and `]`-tokens, eg. `subject[value]`.
```ts
type ExprKind =
// ...
| { type: "index", subject: Expr, value: Expr }
// ...
;
```
```ts
class Parser {
// ...
public parsePostfix(): Expr {
// ...
while (true) {
// ...
if (this.test("[")) {
this.step();
const value = this.parseExpr();
if (!this.test("]") {
this.report("expected ']'");
return { kind: { type: "error" }, pos };
}
this.step();
subject = { kind: { type: "index", subject, value }, pos };
continue;
}
// ...
}
// ...
}
// ...
}
```
If we find a `[`-token, we parse the index part exactly the same way, we parse a group expression.
### 3.4.3 Call expression
A call expression is like an index expression, except that it uses `(` and `)` instead of `[` and `]` and that there can be 0 or more expressions (arguments or args) inside the `(` and `)`. The arguments are seperated by `,`.
```ts
type ExprKind =
// ...
| { type: "call", subject: Expr, args: Expr[] }
// ...
;
```
```ts
class Parser {
// ...
public parsePostfix(): Expr {
// ...
while (true) {
// ...
if (this.test("(")) {
this.step();
let args: Expr[] = [];
if (!this.test(")") {
args.push(this.parseExpr());
while (this.test(",")) {
this.step();
if (this.test(")"))
break;
args.push(this.parseExpr());
}
}
const value = this.parseExpr();
if (!this.test(")") {
this.report("expected ')'");
return { kind: { type: "error" }, pos };
}
this.step();
subject = { kind: { type: "call", subject, args }, pos };
continue;
}
// ...
}
// ...
}
// ...
}
```
Similarly to index epxressions, if we find a `(`-token, we step over it, parse the arguments, check for a `)` and replace `subject` with a call expression containing the previous `subject`.
When parsing the arguments, we start by testing if we've reached a `)` to check if there are any arguments. If not, we parse the first argument.
The consecutive arguments are all preceded by a `,`-token. There we test or `,`, to check if we should keep parsing arguments.
After checking for a seperating `,`, we check if we've reached a `)` and break if so. This is to allow for trailing comma, eg.
```ts
func(
a,
b, // trailing comma
)
```
### 3.5 Prefix expressions