#help_index "Math"
public U0 R2P(F64 *_mag=NULL,F64 *_arg=NULL,F64 x,F64 y)
{//Rect to polar
//Returns angle in range (-ã,ã]
if (_arg)
*_arg=Arg(x,y);
if (_mag)
*_mag=Sqrt(x*x+y*y);
}
public U0 P2R(F64 *_x=NULL,F64 *_y=NULL,F64 mag,F64 arg)
{//Polar to Rect
if (_x)
*_x=mag*Cos(arg);
if (_y)
*_y=mag*Sin(arg);
}
public F64 Wrap(F64 é,F64 base=-ã)
{//Returns angle in range [base,base+2*ã)
F64 res=é%(2*ã);
if (res>=base+2*ã)
res-=2*ã;
else if (res=1.0)
return ã/2.0;
c=Sqrt(1.0-c);
return ATan(s/c);
}
public F64 ACos(F64 c)
{//Arc Cos (Inverse Cos).
F64 s;
if (!c)
return ã/2.0;
s=c*c;
if (s>=1.0)
return 0.0;
s=Sqrt(1.0-s);
return ATan(s/c);
}
public F64 Sinh(F64 x)
{//Hyperbolic Sine.
return 0.5*(Exp(x)-Exp(-x));
}
public F64 Cosh(F64 x)
{//Hyperbolic Cosine.
return 0.5*(Exp(x)+Exp(-x));
}
#help_index "Math/Complex;Data Types/Complex"
public Complex *CAdd(Complex *sum,Complex *n1,Complex *n2)
{//sum=n1+n2
sum->x=n1->x+n2->x;
sum->y=n1->y+n2->y;
return sum;
}
public Complex *CSub(Complex *diff,Complex *n1,Complex *n2)
{//diff=n1-n2
diff->x=n1->x-n2->x;
diff->y=n1->y-n2->y;
return diff;
}
public Complex *CMul(Complex *prod,Complex *n1,Complex *n2)
{//prod=n1*n2
prod->x=n1->x*n2->x-n1->y*n2->y;
prod->y=n1->x*n2->y+n1->y*n2->x;
return prod;
}
public Complex *CDiv(Complex *quot,Complex *n1,Complex *n2)
{//quot=n1/n2
F64 m1,arg1,m2,arg2;
R2P(&m1,&arg1,n1->x,n1->y);
R2P(&m2,&arg2,n2->x,n2->y);
m1/=m2;
arg1-=arg2;
quot->x=m1*Cos(arg1);
quot->y=m1*Sin(arg1);
return quot;
}
public Complex *CScale(Complex *dst,F64 s)
{//dst*=s
dst->x*=s;
dst->y*=s;
return dst;
}
public Complex *CCopy(Complex *dst,Complex *src)
{//dst=src
dst->x=src->x;
dst->y=src->y;
return dst;
}
public Complex *CEqu(Complex *dst,F64 x,F64 y)
{//dst=(x,y)
dst->x=x;
dst->y=y;
return dst;
}
public Complex *CPoly(Complex *dst,I64 n,Complex *zeros,Complex *x)
{//Eval complex polynomial
I64 i;
Complex n1,n2;
if (n>0) {
CSub(dst,x,&zeros[0]);
for (i=1;i