<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="generator" content="TempleOS V5.03"> <meta name="viewport" content="width=device-width"> <link rel="stylesheet" href="/style/templeos.css"> <script src="/script/templeos.js"></script> <style type="text/css"> .cF0{color:#000000;background-color:#ffffff;} .cF1{color:#0000aa;background-color:#ffffff;} .cF2{color:#00aa00;background-color:#ffffff;} .cF3{color:#00aaaa;background-color:#ffffff;} .cF4{color:#aa0000;background-color:#ffffff;} .cF5{color:#aa00aa;background-color:#ffffff;} .cF6{color:#aa5500;background-color:#ffffff;} .cF7{color:#aaaaaa;background-color:#ffffff;} .cF8{color:#555555;background-color:#ffffff;} .cF9{color:#5555ff;background-color:#ffffff;} .cFA{color:#55ff55;background-color:#ffffff;} .cFB{color:#55ffff;background-color:#ffffff;} .cFC{color:#ff5555;background-color:#ffffff;} .cFD{color:#ff55ff;background-color:#ffffff;} .cFE{color:#ffff55;background-color:#ffffff;} .cFF{color:#ffffff;background-color:#ffffff;} </style> </head> <body> <pre id="content"> <a name="l1"></a><span class=cF5> 64-Bit Assembly Quiz</span><span class=cF0> <a name="l2"></a> <a name="l3"></a>1) In 64-bit mode, how many bytes are always pushed? <a name="l4"></a> <a name="l5"></a> PUSH 12 <a name="l6"></a> PUSH EAX <a name="l7"></a> <a name="l8"></a>2) What happens to the upper 32-bits? <a name="l9"></a> <a name="l10"></a> XOR EAX,EAX <a name="l11"></a> MOV EAX,0x12345678 <a name="l12"></a> MOV EAX,0x80000000 <a name="l13"></a> <a name="l14"></a>3) How do you set FS or GS values? <a name="l15"></a> <a name="l16"></a>4) If FS points to current task record, what's wrong with this instruction? <a name="l17"></a> <a name="l18"></a> MOV RAX,U64 FS:[TSS_SOME_MEMBER] <a name="l19"></a> <a name="l20"></a>5) Which instruction takes more bytes? <a name="l21"></a> <a name="l22"></a> MOV RAX,U64 [R8] <a name="l23"></a> MOV RAX,U64 [R13] <a name="l24"></a> <a name="l25"></a>6) Are these the same number of bytes? <a name="l26"></a> <a name="l27"></a> MOV RAX,1234 <a name="l28"></a> MOV R8,1234 <a name="l29"></a> MOV EAX,1234 <a name="l30"></a> <a name="l31"></a>7) True or False <a name="l32"></a> <a name="l33"></a> a) You can access the lowest byte of RAX. <a name="l34"></a> <a name="l35"></a> b) You can access the lowest byte of ESI. <a name="l36"></a> <a name="l37"></a> c) You can access the second-to-lowest byte of RAX. <a name="l38"></a> <a name="l39"></a> d) You can access the second-to-lowest byte of ESI. <a name="l40"></a> <a name="l41"></a>8) How do you call a subroutine at 0x10,0000,0000 from code at 0x00,0010,0000? <a name="l42"></a> <a name="l43"></a>9) How much faster is a REL32 call instruction compared to a software interrupt <a name="l44"></a>or SYSCALL? <a name="l45"></a> <a name="l46"></a>10) How long does an IN or OUT instruction take on a 1GHz machine and on a 3GHz <a name="l47"></a>machine? <a name="l48"></a> <a name="l49"></a>11) How do you push all 16 regs? <a name="l50"></a> <a name="l51"></a>12) Should you put the regs in a TSS? <a name="l52"></a> <a name="l53"></a>13) You can have 4K or 4Meg pages in 32-bit mode. You can have 4K or what size <a name="l54"></a>pages in 64-bit mode? <a name="l55"></a> <a name="l56"></a>14) On a fresh CPU with an empty TLB, how many memory accesses (page tables) <a name="l57"></a>does it take to access one virtual address? <a name="l58"></a> <a name="l59"></a>---- <a name="l60"></a> <a name="l61"></a>TempleOS identity-maps everything, all the time, so the usual convention of <a name="l62"></a>upper memory being for kernel does not apply. It uses physical addresses, <a name="l63"></a>basically. It puts all code in the lowest 2-Gig memory range so that it can use <a name="l64"></a>the CALL REL32 instruction, the fastest. It never changes privilege levels or <a name="l65"></a>messes with page tables, once it is up-and-running. <a name="l66"></a> <a name="l67"></a>---- <a name="l68"></a> <a name="l69"></a>ANSWERS: <a name="l70"></a> <a name="l71"></a>1) All stack pushes and pops are 64-bits. <a name="l72"></a> <a name="l73"></a>2) The upper 32-bits are set to zero. <a name="l74"></a> <a name="l75"></a>3) To set FS or GS, you use WRMSR to write a model specific reg. See </span><span class=cF4> <a name="l76"></a></span><a href="/Wb/Kernel/KernelA.HH.HTML#l542"><span class=cF4>IA32_FS_BASE</span></a><span class=cF0> and </span><a href="/Wb/Kernel/KUtils.HC.HTML#l445"><span class=cF4>SET_FS_BASE</span></a><span class=cF0>. <a name="l77"></a> <a name="l78"></a>4) Displacement addressing is now RIP relative, so RIP would be added to <a name="l79"></a>TSS_SOME_MEMBER. (Useless) <a name="l80"></a> <a name="l81"></a>5) The R13 instruction takes one more byte because it is like </span><a href="/Wb/Kernel/KernelA.HH.HTML#l1789"><span class=cF4>REG_RBP</span></a><span class=cF0> in the <a name="l82"></a>ModR. <a name="l83"></a> <a name="l84"></a>6) The R8 instruction needs a REX byte prefix to specify upper-8 reg. <a name="l85"></a> <a name="l86"></a>7) You can access the lowest byte of any reg. You can access AH but not the <a name="l87"></a>second-to-lowest byte of ESI. <a name="l88"></a> <a name="l89"></a>8) To call a subroutine farther than 2Gig away, you put the address into RAX, <a name="l90"></a>then CALL RAX. <a name="l91"></a> <a name="l92"></a>9) CALL REL32 is significantly faster. See </span><a href="/Wb/Demo/Lectures/InterruptDemo.HC.HTML#l1"><span class=cF4>::/Demo/Lectures/InterruptDemo.HC</span></a><span class=cF0>. <a name="l93"></a> <a name="l94"></a>10) IN or OUT instructions happen at a fixed speed based on the original ISA bus <a name="l95"></a>clock. <a name="l96"></a> <a name="l97"></a>11) PUSHAD is not available for 64-bit mode, so you do it by hand. <a name="l98"></a> <a name="l99"></a>12) The TSS is no longer used to hold the task state because there are 16 regs <a name="l100"></a>and they are 64-bits, not 32-bits. I guess Intel decided doing it by hand was <a name="l101"></a>better than TSSes. <a name="l102"></a> <a name="l103"></a>13) 64-bit mode has 4K or 2Meg page size. <a name="l104"></a> <a name="l105"></a>14) For one access, there are 3-4 levels of page tables plus the location <a name="l106"></a>itself. </span></pre></body> </html>